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Abstract 
 
To allow for division by zero, the present study introduces the zero-unit 𝑧 , which, in 
combina=on with real and complex numbers, leads to the sets of hyper-complex and meta-
complex numbers. Some proper=es of these numbers are discussed, and an ini=al introduc=on 
to arithme=c with numbers is provided. The study is not complete, but is merely intended as 
a star=ng point for possible further research, since the introduc=on of new number sets might 
open up new perspec=ves. 
 
 
1. Introduc0on 
 
Complex numbers were introduced in mathema=cs as a way to solve mathema=cal problems. 
These problems arose when taking the square root of nega=ve numbers, e.g., in solving 
quadra=c equa=ons. Such equa=ons with nega=ve numbers under square roots seem to have 
no meaningful solu=ons within the domain of real numbers. To overcome this obstacle, the 
concept of the imaginary number 𝑖 was introduced. The imaginary unit  𝑖  is defined as: 
 

𝑖 = √−1 
 
This means that: 
 

𝑖! = −1 
 
This defini=on leads to the forma=on of complex numbers, represented in the form 𝑎	 + 	𝑏𝑖, 
where 𝑎 and 𝑏 are real numbers, and 𝑖 is the imaginary unit. The imaginary number 𝑖 is an 
abstract concept. Concretely, 𝑖 has no equivalent in real numbers because there is no real 
number whose square is equal to -1. Although 𝑖 doesn't "exist" in the way real numbers do 
(it's not a real number), it has very concrete and valuable mathema=c significance and 
applica=ons. It serves as a tool to solve mathema=cal problems that would otherwise be 
unsolvable. Complex numbers found their way into various branches of mathema=cs and 
science. They are indispensable in quantum mechanics (e.g., in the Schrödinger equa=on).  
 
The square root of nega=ve (real) numbers is not the only undefined ("forbidden") opera=on 
in mathema=cs. Division by zero is also undefined.1 But what prevents us similar to how the 

 
1 Logarithms of nega/ve numbers are not defined in real numbers either, because they cannot be interpreted as exponents 
of posi/ve numbers to produce a nega/ve result. However, introducing a unit for logarithms of nega/ve numbers is beyond 
the scope of this text. To allow for logarithms of nega/ve numbers, the unit 𝑙 = 𝑙𝑜𝑔(−1) might be introduced. Numbers of 
the form 𝑎𝑙 , where 𝑎 ∈ ℝ!"  could be called 𝑙-numbers. For every 𝑎 ∈ ℝ!" , the following holds: 𝑙𝑜𝑔(−𝑎) = 𝑙𝑜𝑔(−1. 𝑎) =
𝑙𝑜𝑔(−1) + 𝑙𝑜𝑔(𝑎) = 𝑙 + 𝑙𝑜𝑔(𝑎). That is the sum of an 𝑙-number and a real number. The combina/on of 𝑙-numbers with real, 
imaginary, and zero numbers would lead to an explosion of dimensions and numbers of the form	𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧 + 𝑓𝑙 +
𝑔𝑖𝑙 + ℎ𝑧𝑙 + 𝑗𝑖𝑧𝑙. These are eight-dimensional numbers similar to octonions (Graves and Hamilton). 



number 𝑖 was introduced to enable square roo=ng of nega=ve numbers, from introducing a 
number that makes division by zero possible? What are the consequences and poten=al 
applica=ons of such an introduc=on? That is the subject of the present study. 
 
 
2. The zero-unit 𝒛 
 
Let us define the zero-unit 𝑧 as: 
 

𝑧 =
1
0 

 
This number does not belong to the set of real numbers ℝ. Division by zero in ℝ results in an 
indeterminacy. The lim

"→$

%
"

  is not defined in ℝ; for posi=ve real values approaching 0, %
"

 gets 

closer to ∞, while for nega=ve values approaching 0, %
"
  gets closer to −∞	. 

 
𝑧 is neither a real nor a complex number; it is the unit of a set of numbers that I call zero- 
numbers; these are numbers of the form: 
 

𝑐𝑧 
 
where 𝑐 is a real number. 
 
This allows for further extension of the set of complex numbers to the hyper-complex 
numbers.2 Hyper-complex numbers are of the form: 
 

ℎ	 = 	𝑎	 + 	𝑏𝑖	 + 	𝑐𝑧 
 
where 𝑎, 𝑏, and 𝑐 are real numbers. 𝑎 is the real part 𝑅𝑒{ℎ} of the hyper-complex number ℎ; 
𝑏 is the imaginary part 𝐼𝑚{ℎ}, and 𝑐 is the zero-part 𝑍𝑒{ℎ}. 
 
When 𝑎 = 𝑏 = 0 and 𝑐 ≠ 𝑂, ℎ is a zero-number: ℎ = 𝑐𝑧	. 
When 𝑏 = 𝑐 = 0 and 𝑎 ≠ 𝑂, ℎ is a real number: ℎ = 𝑎	. 
When 𝑎 = 𝑐 = 0 and 𝑏 ≠ 𝑂, ℎ is an imaginary number: ℎ = 𝑏𝑖	. 
 
Complex numbers can be represented in a plane (the complex plane), where the real numbers 
are on one axis (the x-axis) and the imaginary numbers are on the other axis (the y-axis). 1 is 
the unit of real numbers, 𝑖 is the unit of imaginary numbers. Similarly, hyper-complex numbers 
can be represented in a three-dimensional space, as is shown in Figure 1. A z-axis is added to 
the complex plane for the zero-numbers.3 𝑧 is the unit of the zero-numbers (the zero-unit) on 
the z-axis. 
 

 
2 The term "hyper-complex numbers" is usually used for quaternions (four-dimensional extensions of complex numbers). I 
deviate from the usual nomenclature and refer to them as "meta-complex numbers" for four-dimensional numbers because 
they go beyond (meta) visual (three-dimensional) representa/on (see further). 
3 This happens to correspond with the symbol 𝑧 for the zero unit. 



	 
Fig. 1 visual representa1on of the axes of real, imaginary, and zero-numbers. 

 
 
When 𝑐 = 0 en 𝑎 ≠ 𝑂	𝑒𝑛	𝑏 ≠ 𝑂, ℎ is a complex number ℎ = 𝑎 + 𝑏𝑖	. 
The set of complex numbers is ℂ. 
 
When 𝑏	 = 	0 , 𝑎	 ≠ 	0	and 𝑐	 ≠ 	0, then ℎ is a real-zero number ℎ	 = 	𝑎	 + 	𝑐𝑧	.  
The set of real-zero numbers is 𝔹. 
 
When a = 0 and b ≠ 0 and c ≠ 0, then h is a imaginary-zero number h = bi + cz . The set of 
imaginary-zero numbers is 𝔸. 
 
When a ≠ 0, b ≠ 0, and c ≠ 0, then h is a hyper-complex number h = a + bi + cz. The set of hyper-
complex numbers is ℍ. 
 
In the visual representa=on, the plane containing the x and y-axes represents the set of 
complex numbers ℂ, the plane determined by the x and z-axes represents the set of real-zero 
numbers 𝔹, and the plane determined by the y-axis and z-axis represents the set of imaginary-
zero numbers 𝔸 (see Figure 2). 

 

 
 

Fig. 2 Visual representa1on of the sets of imaginary-zero numbers (𝔸), real-zero numbers (𝔹),  
and complex numbers (ℂ) in the three-dimensional representa1on of the set of hyper-complex numbers(ℍ) . 



 
Each hyper-complex number ℎ can be represented by a point in the three-dimensional (hyper-
complex) space. As an example, the number ℎ	 = 	2	 + 	3𝑖	 + 	4𝑧 is shown in Figure 3. 
 
 

 
Fig. 3. Graphic representa1on of hyper-complex number ℎ	 = 	2	 + 	3𝑖	 + 	4𝑧	. 

 
 
The following table provides an overview of the extended number sets. 
 

 
Table 1. Overview of number sets 

 
3. Conjugates 
 
The conjugate of a complex number	 ℎ = 𝑎 + 𝑏𝑖 	is	 the	 complex	 number	 ℎ∗ = 𝑎 − 𝑏𝑖	 .	
Similarly,	we	can	define the conjugates of real-zero numbers,	imaginary-zero	numbers	and	
hyper-complex numbers. 
 
The	conjugate	of	real-zero	number	ℎ = 𝑎 + 𝑐𝑧	is	ℎ∗ = 𝑎 − 𝑐𝑧		
	
The	conjugate	of	imaginary-zero	number	ℎ = 𝑏𝑖 + 𝑐𝑧	is	ℎ∗ = 𝑏𝑖 − 𝑐𝑧		
	
The	hyper-complex number ℎ = 𝑎 + 𝑏𝑖 + 𝑐𝑧 has three possible conjugates:	
	

ℎ'∗ = 𝑎 − 𝑏𝑖 + 𝑐𝑧	



	
ℎ(∗ = 𝑎 + 𝑏𝑖 − 𝑐𝑧	

and	
ℎ'(∗ = 𝑎 − 𝑏𝑖 − 𝑐𝑧		

	
 
4. Arithme0c with Hyper-complex Numbers; Meta-complex numbers 
 
4.1 Addi-on and Subtrac-on 
 
The sum (or difference if 𝑎, 𝑏,  and/or 𝑐  are nega=ve real numbers) of two hyper-complex 
numbers ℎ%	and ℎ! 	is obtained by adding the real part, imaginary part, and zero part of both 
numbers separately. 
 
ℎ% + ℎ! = (𝑎% + 𝑏%𝑖 + 𝑐%𝑧) + (𝑎! + 𝑏!𝑖 + 𝑐!𝑧) = (𝑎% + 𝑎!) 	+ (𝑏% + 𝑏!)𝑖 + (𝑐% + 𝑐!)𝑧	

 
The sum of two hyper-complex numbers is again a hyper-complex number.  
 
 
4.2 Mul-plica-on 
 
The product of two hyper-complex numbers ℎ%	and ℎ! is obtained by mul=plying each term of 
both numbers with each other. 
	

ℎ%. ℎ! = (𝑎% + 𝑏%𝑖 + 𝑐%𝑧). (𝑎! + 𝑏!𝑖 + 𝑐!𝑧)	
	

= 𝑎%𝑎! 	+ 𝑎%𝑏!𝑖	 + 𝑎%𝑐!𝑧 + 𝑎!𝑏%𝑖 + 𝑏%𝑏!𝑖! + 𝑏%𝑐!𝑖𝑧 + 𝑎!𝑐%𝑧 + 𝑏!𝑐%𝑖𝑧 + 𝑐%𝑐!𝑧!	
	

= (𝑎%𝑎! 	− 𝑏%𝑏!) + (𝑎%𝑏! + 𝑎!𝑏%)𝑖	+	(𝑎%𝑐! + 𝑎!𝑐%)𝑧 + (𝑏%𝑐! + 𝑏!𝑐%)𝑖𝑧 + 𝑐%𝑐!𝑧!	
 
 
In this product, 𝑎%𝑎! − 𝑏%𝑏!	is a real number (the real part), (𝑎%𝑏! + 𝑎!𝑏%)𝑖 is an imaginary 
number, and (𝑎%𝑐! + 𝑎!𝑐%)𝑧 is a zero-number. In addi=on to the real, imaginary, and zero 
parts, this product also contains a term (the fi_h term) that includes 𝑧!. 
 

𝑧! = 𝑧. 𝑧 =
1
0 .
1
0 =

1.1
0.0 =

1
0	

 
This implies: 

𝑧! = 𝑧	
 
 
The coefficient (𝑐%𝑐!)	of the term with 𝑧! in the product can, therefore, be combined with 
the rest of the zero-part. The product  ℎ%. ℎ!	becomes: 
 
ℎ%. ℎ! = (𝑎%𝑎! 	− 𝑏%𝑏!) 	+ (𝑎%𝑏! + 𝑎!𝑏%)𝑖	+	(𝑎%𝑐! + 𝑎!𝑐% + 𝑐%𝑐!)𝑧 + (𝑏%𝑐! + 𝑏!𝑐%)𝑖𝑧	

 
Finally, there's the fourth term of the product in which 𝑖 is mul=plied by 𝑧: 



 

𝑖𝑧 = √−1	.
1
0 =

√−1
0 	

	
 
This number is neither an imaginary nor a zero number but belongs to the numbers we call 
meta-numbers. 𝑖𝑧 is the unit of meta-numbers. Meta-numbers are numbers of the form: 
 

𝑚 = 𝑑𝑖𝑧		
 
Here, 𝑑 is a real number. 
 
In combina=on with the set of hyper-complex numbers, we obtain the set of meta-complex 
numbers 𝕄. Meta-complex numbers are numbers of the form: 
 

𝑚 = 𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧		
	
where 𝑎, 𝑏, c, and 𝑑 are real numbers. Meta-complex numbers cannot be visually represented 
in three-dimensional space, because they require a four-dimensional space.4  
 
The product of two hyper-complex numbers is a meta-complex number. 
 
 
4.3 Powers of 𝒛 
 
We have already seen that 𝑧! = 𝑧. In general, for every 𝑛	 ∈ 	ℕ$: 
 

𝑧) = 𝑧	
	

𝑧*) =
1
𝑧) =

1
𝑧 =

0
1 = 0	

 
Just as the zeroth power of zero (0$)	leads to discussion because it is not uniquely defined5, 
the zeroth power of the zero-unit (𝑧$)	is not uniquely defined either. We can calculate 𝑧$	in 
two ways: 
 

𝑧$ = (
1
0)

$ =
1$

0$ =
1
1 = 1	

 
or: 
 

𝑧$ = 𝑧)*) =
𝑧)

𝑧*) =
𝑧
0 = 𝑧.

1
0 = 𝑧. 𝑧 = 𝑧! = 𝑧	

 

 
4 Meta-complex numbers are comparable to quaternions (the extension of complex numbers to for dimensions) 
(see W. R. Hamilton). 
5 The most common values for 0!are 1 or "undefined" (because 0!=!

!
, which results in division by zero). 



 
Therefore, 𝑧$ is undefined (or a choice has to be made, just like with real numbers). 
 
 
4.3 Roots of 𝒛 
 

√𝑧 = d𝑧! = 𝑧	
	
In	general,	for	every		𝑛	 ∈ 	ℕ$:	

√𝑧" = 𝑧	
 
 
4.4	Multiplication	of	conjugates	
	
	

(𝑎 + 𝑐𝑧). (𝑎 − 𝑐𝑧) = 𝑎𝑎 − 𝑎𝑐𝑧 + 𝑎𝑐𝑧 − 𝑐!𝑧! = 𝑎! − 𝑐!𝑧	
	

(𝑏𝑖 + 𝑐𝑧). (𝑏𝑖 − 𝑐𝑧) = 𝑏!𝑖! − 𝑏𝑐𝑖𝑧 + 𝑏𝑐𝑖𝑧 − 𝑐!𝑧! = −𝑏! − 𝑐!𝑧	
	
(𝑎 + 𝑏𝑖 + 𝑐𝑧). (𝑎 − 𝑏𝑖 + 𝑐𝑧) = 𝑎! − 𝑎𝑏𝑖 + 𝑎𝑐𝑧 + 𝑎𝑏𝑖 − 𝑏!𝑖! + 𝑏𝑐𝑖𝑧 + 𝑎𝑐𝑧 − 𝑏𝑐𝑖𝑧 + 𝑐!𝑧!	

= 𝑎! + 2𝑎𝑐𝑧 − 𝑏!𝑖! + 𝑐!𝑧!	
= 𝑎! + 𝑏! + (2𝑎𝑐 + 𝑐!)𝑧	

	
(𝑎 + 𝑏𝑖 + 𝑐𝑧). (𝑎 + 𝑏𝑖 − 𝑐𝑧) = 𝑎! + 𝑎𝑏𝑖 − 𝑎𝑐𝑧 + 𝑎𝑏𝑖 + 𝑏!𝑖! − 𝑏𝑐𝑖𝑧 + 𝑎𝑐𝑧 + 𝑏𝑐𝑖𝑧 − 𝑐!𝑧!	

= 𝑎! + 2𝑎𝑏𝑖 + 𝑏!𝑖! + 𝑎𝑐𝑧 − 𝑐!𝑧!	
= 𝑎! − 𝑏! + 2𝑎𝑏𝑖 + (𝑎𝑐 − 𝑐!)𝑧	

	
(𝑎 + 𝑏𝑖 + 𝑐𝑧). (𝑎 − 𝑏𝑖 − 𝑐𝑧) = 𝑎! − 𝑎𝑏𝑖 − 𝑎𝑐𝑧 + 𝑎𝑏𝑖 − 𝑏!𝑖! − 𝑏𝑐𝑖𝑧 + 𝑎𝑐𝑧 − 𝑏𝑐𝑖𝑧 − 𝑐!𝑧!	

= 𝑎! − 𝑏!𝑖! − 2𝑏𝑐𝑖𝑧 − 𝑐!𝑧!	
= 𝑎! + 𝑏! − 𝑐!𝑧 − 2𝑏𝑐𝑖𝑧	

 
4.4	Division	
	
A	hyper-complex	or	meta-complex	number	can	be	divided	by	a	real	number	or	a	complex	
number,	but	the	division	by	a	hyper-complex	or	meta-complex	number	is	undekined	in	ℍ	
and	𝕄.	The	quotient	of	a	meta-complex	number	divided	by	a	real	number	r	is:	
	

𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧
𝑟 =

𝑎
𝑟 +

𝑏
𝑟 𝑖 +

𝑐
𝑟 𝑧 +

𝑑
𝑟 𝑖𝑧	

	
This	is	again	a	meta-complex	number.		
	
A	meta-complex	number	can	also	be	divided	by	zero:	
	
𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧

0 =
𝑎
0 +

𝑏
0 𝑖 +

𝑐
0 𝑧 +

𝑑
0 𝑖𝑧 = 𝑎𝑧 + 𝑏𝑖𝑧 + 𝑐𝑧! + 𝑑𝑖𝑧! = (𝑎 + 𝑐)𝑧 + (𝑏 + 𝑑)𝑖𝑧	

	
The	division	of	a	meta-complex	number	by	a	complex	number	is:	
	



𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧
𝑝 + 𝑞𝑖 =

(𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧). (𝑝 − 𝑞𝑖)
(𝑝 + 𝑞𝑖). (𝑝 − 𝑞𝑖) 	

	

=
𝑎𝑝 − 𝑎𝑞𝑖 + 𝑏𝑝𝑖 − 𝑏𝑞𝑖! + 𝑐𝑝𝑧 − 𝑐𝑞𝑖𝑧 + 𝑑𝑝𝑖𝑧 − 𝑑𝑞𝑖!𝑧)

𝑝! − 𝑞!𝑖! 	

	

=
(𝑎𝑝 + 𝑏𝑞) + (−𝑎𝑞 + 𝑏𝑝)𝑖 + (𝑐𝑝 + 𝑑𝑞)𝑧 + (−𝑐𝑞 + 𝑑𝑝)𝑖𝑧

𝑝! + 𝑞! 	

	

=
𝑎𝑝 + 𝑏𝑞
𝑝! + 𝑞! + (

𝑎𝑝 + 𝑏𝑞
𝑝! + 𝑞! )𝑖 + (

𝑎𝑝 + 𝑏𝑞
𝑝! + 𝑞! )𝑧 + (

𝑎𝑝 + 𝑏𝑞
𝑝! + 𝑞! )𝑖𝑧	

	
This	is	again	a	meta-complex	number.	
	
	
5. The Ring of meta-numbers 
 
The	set	of	meta-complex	numbers	with	addition	and	multiplication	has	the	following	
characteristics:	
	
5.1 Closure under addi-on and mul-plica-on 
 
For all 𝑚%	and 𝑚! ∈ 	𝕄: 𝑚% +𝑚! ∈ 	𝕄 (see 4.1). 
 
For all 𝑚%	and 𝑚! ∈ 	𝕄: 𝑚%. 𝑚!𝕄 (see 4.2). 
 
Note that there is no closure under mul=plica=on for the set ℍ of hyper-complex numbers, 
because the product of two hyper-complex numbers is not generally a hyper-complex 
number, but a meta-complex number. 
 
 
5.2 Commuta-vity of addi-on and mul-plica-on 
 
a) Addi=on is commuta=ve in 𝕄 
 

For all 𝑚%	and 𝑚! ∈ 	𝕄:𝑚% +𝑚! =	𝑚! +𝑚%	
 
proof: 
 
𝑚% +𝑚! = (𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧) + (𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧)	
	
= (𝑎% + 𝑎!) 	+ (𝑏% + 𝑏!)𝑖 + (𝑐% + 𝑐!)𝑧 + (𝑑% + 𝑑!)𝑖𝑧	
	
and	
	
𝑚! +𝑚% = (𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧) + (𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧)	
	



= (𝑎! + 𝑎%) 	+ (𝑏! + 𝑏%)𝑖 + (𝑐! + 𝑐%)𝑧 + (𝑑! + 𝑑%)𝑖𝑧	
	
= (𝑎% + 𝑎!) 	+ (𝑏% + 𝑏!)𝑖 + (𝑐% + 𝑐!)𝑧 + (𝑑% + 𝑑!)𝑖𝑧	
	
⇒ 𝑚% +𝑚! =	𝑚! +𝑚%∎	
	
 
b) Mul=plica=on is commuta=ve in 𝕄. 
 

For all 𝑚%	and 𝑚! ∈ 	𝕄:𝑚%. 𝑚! =	𝑚!. 𝑚%	
 
proof: 
 
𝑚%. 𝑚! = (𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧). (𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧)	
	
= (𝑎%𝑎! + 𝑎%𝑏!𝑖 + 𝑎%𝑐!𝑧 + 𝑎%𝑑!𝑖𝑧) + (𝑎!𝑏%𝑖 + 𝑏%𝑏!𝑖! + 𝑏%𝑐!𝑖𝑧 + 𝑏%𝑑!𝑖!𝑧) + (𝑎!𝑐%𝑧

+ 𝑏!𝑐%𝑖𝑧 + 𝑐%𝑐!𝑧! + 𝑐%𝑑!𝑖𝑧!) + (𝑎!𝑑%𝑖𝑧 + 𝑏!𝑑%𝑖!𝑧 + 𝑐!𝑑%𝑖𝑧! + 𝑑%𝑑!𝑖!𝑧!) 
 
= (𝑎%𝑎! − 𝑏%𝑏!) + (𝑎%𝑏! + 𝑎!𝑏%)𝑖 + (𝑎%𝑐! + 𝑎!𝑐% − 𝑏%𝑑! − 𝑏!𝑑% + 𝑐%𝑐! − 𝑑%𝑑!)𝑧		

+ (𝑎%𝑑!+𝑎!𝑑% + 𝑏%𝑐! + 𝑏!𝑐% + 𝑐%𝑑! + 𝑐!𝑑%)𝑖𝑧 
 
and 
 
𝑚! +𝑚% = (𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧) + (𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧)	
 
= (𝑎%𝑎! − 𝑏%𝑏!) + (𝑎%𝑏! + 𝑎!𝑏%)𝑖 + (𝑎%𝑐! + 𝑎!𝑐% − 𝑏%𝑑! − 𝑏!𝑑% + 𝑐%𝑐! − 𝑑%𝑑!)𝑧		

+ (𝑎%𝑑!+𝑎!𝑑% + 𝑏%𝑐! + 𝑏!𝑐% + 𝑐%𝑑! + 𝑐!𝑑%)𝑖𝑧 
 
⇒ 𝑚%. 𝑚! =	𝑚!. 𝑚%	∎	
 
 
5.3 Addi-ve and mul-plica-ve iden-ty element 
 
a)	Additive	identity	element	
	
0 + 0𝑖 + 0𝑧 + 0𝑖𝑧	(or	0	for	short)	is	the	additive	identity	element	of		𝕄.	
	

For all 𝑚 ∈ 𝕄:	𝑚 + (0 + 0𝑖 + 0𝑧 + 0𝑖𝑧) 	= 𝑚 + 0 = 𝑚 
 
Proof: 
	
∀𝑎, 𝑏, 𝑐	𝜖	ℝ:	
	
𝑚 + (0 + 0𝑖 + 0𝑧 + 0𝑖𝑧) 	= (𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧) + (0 + 0𝑖 + 0𝑧 + 0𝑖𝑧)	
	
= (𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧) + 0 = 𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧 = 𝑚	∎ 
 
 



b) Mul=plica=ve iden=ty element 
 
The real number 1	is	the mul=plica=ve iden=ty element	of		𝕄.	
 

For all 𝑚 ∈ 𝕄:	1.𝑚 = 𝑚 
 
Proof: 
 
∀𝑎, 𝑏, 𝑐	 ∈ 	ℝ:	
	

1.𝑚 = 1. (𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧) = 𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧 = 𝑚	∎	
 
 
5.4 Addi-ve inverses 
 
−𝑎 − 𝑏𝑖 − 𝑐𝑧	 − 𝑑𝑖𝑧 is the inverse element of any meta-complex number. 
 
For all 𝑚 ∈ 𝕄:	𝑚 + (−𝑚) = 𝑚 −𝑚 = 0 
 
Proof 
∀	𝑚 ∈ 𝕄:  
 
𝑚 +−𝑚 = (𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧) + (−𝑎 − 𝑏𝑖 − 𝑐𝑧	 − 𝑑𝑖𝑧) 
 
= (𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧) − (𝑎 + 𝑏𝑖 + 𝑐𝑧	 + 𝑑𝑖𝑧) = 0		∎ 
 
 
5.6 Associa-vity of addi-on and mul-plica-on 
 
For all 𝑚%, 𝑚!	and 𝑚+ ∈ 	𝕄: 
 

(𝑚% +𝑚!) + 𝑚+ =	𝑚% + (𝑚! +𝑚+) = 𝑚% +𝑚! +𝑚+	
 
proof: 
∀	𝑚%, 𝑚!	and 𝑚+ ∈ 	𝕄: 
 
(𝑚% +𝑚!) + 𝑚+ 
 
= [(𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧) + (𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧)] + (𝑎+ + 𝑏+𝑖 + 𝑐+𝑧 + 𝑑+𝑖𝑧)	
	
= [(𝑎% + 𝑎!) 	+ (𝑏% + 𝑏!)𝑖 + (𝑐% + 𝑐!)𝑧 + (𝑑% + 𝑑!)𝑖𝑧] + (𝑎+ + 𝑏+𝑖 + 𝑐+𝑧 + 𝑑+𝑖𝑧)	
	
= (𝑎% + 𝑎! + 𝑎+) 	+ (𝑏% + 𝑏! + 𝑏+)𝑖 + (𝑐% + 𝑐! + 𝑐+)𝑧 + (𝑑% + 𝑑! + 𝑑+)𝑖𝑧	
	
and	similarly:	
	
𝑚% + (𝑚! +𝑚+)	
	



= (𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧) + [(𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧) + (𝑎+ + 𝑏+𝑖 + 𝑐+𝑧 + 𝑑+𝑖𝑧)]	
	
= (𝑎% + 𝑎! + 𝑎+) 	+ (𝑏% + 𝑏! + 𝑏+)𝑖 + (𝑐% + 𝑐! + 𝑐+)𝑧 + (𝑑% + 𝑑! + 𝑑+)𝑖𝑧	
	
and	similarly:	
	
𝑚% +𝑚! +𝑚+	
	
= (𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧) + (𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧) + (𝑎+ + 𝑏+𝑖 + 𝑐+𝑧 + 𝑑+𝑖𝑧)	
	
= (𝑎% + 𝑎! + 𝑎+) 	+ (𝑏% + 𝑏! + 𝑏+)𝑖 + (𝑐% + 𝑐! + 𝑐+)𝑧 + (𝑑% + 𝑑! + 𝑑+)𝑖𝑧	
 
 
⇒ (𝑚% +𝑚!) + 𝑚+ =	𝑚% + (𝑚! +𝑚+) = 𝑚% +𝑚! +𝑚+∎	
  
 
5.7 Distribu-vity of mul-plica-on and addi-on 
 
For all 𝑚%,	𝑚!,	and	𝑚+ ∈ 	𝕄:𝑚%. (𝑚! +𝑚+) = 𝑚%. 𝑚! +𝑚%. 𝑚+	
 
proof: 
∀	𝑚%, 𝑚!	and 𝑚+ ∈ 	𝕄: 
	
𝑚%. (𝑚! +𝑚+)	
	
= (𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧). [(𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧) + (𝑎+ + 𝑏+𝑖 + 𝑐+𝑧 + 𝑑+𝑖𝑧)]	
	
= (𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧). [(𝑎! + 𝑎+) + (𝑏! + 𝑏+)𝑖 + (𝑐! + 𝑐+)𝑧 + (𝑑! + 𝑑+)𝑖𝑧]	
	
= 𝑎%. (𝑎! + 𝑎+) + 𝑎%. (𝑏! + 𝑏+)𝑖 + 𝑎%. (𝑐! + 𝑐+)𝑧 + 𝑎%. (𝑑! + 𝑑+)𝑖𝑧	
+𝑏%𝑖. (𝑎! + 𝑎+) + 𝑏%𝑖. (𝑏! + 𝑏+)𝑖 + 𝑏%𝑖. (𝑐! + 𝑐+)𝑧 + +𝑏%𝑖. (𝑑! + 𝑑+)𝑖𝑧	
+𝑐%𝑧. (𝑎! + 𝑎+) + 𝑐%𝑧. (𝑏! + 𝑏+)𝑖 + 𝑐%𝑧. (𝑐! + 𝑐+)𝑧 + 𝑐%𝑧. (𝑑! + 𝑑+)𝑖𝑧	
	
= 𝑎%𝑎! + 𝑎%𝑎+ + (𝑎%𝑏! + 𝑎%𝑏+ + 𝑎!𝑏% + 𝑎+𝑏%)𝑖+(𝑎%𝑐! + 𝑎%𝑐+ + 𝑎!𝑐% + 𝑎+𝑐%)𝑧	
+(𝑏%𝑏! + 𝑏%𝑏+)𝑖! + (𝑏%𝑐! + 𝑏%𝑐+ + 𝑏!𝑐% + 𝑏+𝑐%)𝑖𝑧 + (𝑐%𝑐! + 𝑐%𝑐+)𝑧! + (𝑎%𝑑! + 𝑎%𝑑+)𝑖𝑧	
+(𝑏%𝑑! + 𝑏%𝑑+)𝑖!𝑧 + (𝑐%𝑑! + 𝑐%𝑑+)𝑖𝑧!	
	
= (𝑎%𝑎! + 𝑎%𝑎+ − 𝑏%𝑏! − 𝑏%𝑏+) + (𝑎%𝑏! + 𝑎%𝑏+ + 𝑎!𝑏% + 𝑎+𝑏%)𝑖+(𝑎%𝑐! + 𝑎%𝑐+ + 𝑎!𝑐%	
+𝑎+𝑐%−𝑏%𝑑! − 𝑏%𝑑+ + 𝑐%𝑐! + 𝑐%𝑐+)𝑧 + (𝑎%𝑑! + 𝑎%𝑑+ + 𝑏%𝑐! + 𝑏%𝑐+ + 𝑏!𝑐% + 𝑏+𝑐%	
+𝑐%𝑑! + 𝑐%𝑑+)𝑖𝑧	
	
and	
	
𝑚%. 𝑚! +𝑚%. 𝑚+	
	
= [(𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧). (𝑎! + 𝑏!𝑖 + 𝑐!𝑧 + 𝑑!𝑖𝑧)]

+ [(𝑎% + 𝑏%𝑖 + 𝑐%𝑧 + 𝑑%𝑖𝑧). (𝑎+ + 𝑏+𝑖 + 𝑐+𝑧 + 𝑑+𝑖𝑧)]	
	
= (𝑎%𝑎! + 𝑎%𝑏!𝑖 + 𝑎%𝑐!𝑧 + 𝑎%𝑑!𝑖𝑧) + (𝑏%𝑎!𝑖 + 𝑏%𝑏!𝑖! + 𝑏%𝑐!𝑖𝑧 + 𝑏%𝑑!𝑖!𝑧)	



+(𝑎!𝑐%𝑧 + 𝑏!𝑐%𝑖𝑧 + 𝑐%𝑐!𝑧! + 𝑐%𝑑!𝑖𝑧!) +	(𝑎!𝑑%𝑖𝑧 + 𝑏!𝑑%𝑖!𝑧 + 𝑐!𝑑%𝑖𝑧! + 𝑑%𝑑!𝑖!𝑧!)	
+(𝑎%𝑎+ + 𝑎%𝑏+𝑖 + 𝑎%𝑐+𝑧 + 𝑎%𝑑+𝑖𝑧) + (𝑏%𝑎+𝑖 + 𝑏%𝑏+𝑖! + 𝑏%𝑐+𝑖𝑧 + 𝑏%𝑑+𝑖!𝑧)	
+(𝑎+𝑐%𝑧 + 𝑏+𝑐%𝑖𝑧 + 𝑐%𝑐+𝑧! + 𝑐%𝑑+𝑖𝑧!) +	(𝑎+𝑑%𝑖𝑧 + 𝑏+𝑑%𝑖!𝑧 + 𝑐+𝑑%𝑖𝑧! + 𝑑%𝑑+𝑖!𝑧!)	
	
= (𝑎%𝑎! + 𝑎%𝑏!𝑖 + 𝑎%𝑐!𝑧 + 𝑎%𝑑!𝑖𝑧) + (𝑏%𝑎!𝑖 − 𝑏%𝑏! + 𝑏%𝑐!𝑖𝑧 − 𝑏%𝑑!𝑧)	
+(𝑎!𝑐%𝑧 + 𝑏!𝑐%𝑖𝑧 + 𝑐%𝑐!𝑧 + 𝑐%𝑑!𝑖𝑧) +	(𝑎!𝑑%𝑖𝑧 − 𝑏!𝑑%𝑧 + 𝑐!𝑑%𝑖𝑧 − 𝑑%𝑑!𝑧)	
+(𝑎%𝑎+ + 𝑎%𝑏+𝑖 + 𝑎%𝑐+𝑧 + 𝑎%𝑑+𝑖𝑧) + (𝑏%𝑎+𝑖 − 𝑏%𝑏+ + 𝑏%𝑐+𝑖𝑧 − 𝑏%𝑑+𝑧)	
+(𝑎+𝑐%𝑧 + 𝑏+𝑐%𝑖𝑧 + 𝑐%𝑐+𝑧 + 𝑐%𝑑+𝑖𝑧) +	(𝑎+𝑑%𝑖𝑧 − 𝑏+𝑑%𝑧 + 𝑐+𝑑%𝑖𝑧 − 𝑑%𝑑+𝑧)	
	
= (𝑎%𝑎! + 𝑎%𝑎+ − 𝑏%𝑏! − 𝑏%𝑏+) + (𝑎%𝑏! + 𝑎%𝑏+ + 𝑎!𝑏% + 𝑎+𝑏%)𝑖+(𝑎%𝑐! + 𝑎%𝑐+ + 𝑎!𝑐%	
+𝑎+𝑐%−𝑏%𝑑! − 𝑏%𝑑+ + 𝑐%𝑐! + 𝑐%𝑐+)𝑧 + (𝑎%𝑑! + 𝑎%𝑑+ + 𝑏%𝑐! + 𝑏%𝑐+ + 𝑏!𝑐% + 𝑏+𝑐%	
+𝑐%𝑑! + 𝑐%𝑑+)𝑖𝑧	
 
⇒ 𝑚%. (𝑚! +𝑚+) = 𝑚%. 𝑚! +𝑚%. 𝑚+		∎	
 
 
Therefore, the set	of	meta-complex	numbers	with	addition	and	multiplication	is	a	
commutative	ring	with	unity. 
	
	
	
6.	The	norm	of	meta-complex	numbers	
	
The	norm	of	a	meta-complex	number		𝑚 = 𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧	is	dekined	as:	
	

∥ 𝑚 ∥= d𝑎! + 𝑏! + 𝑐! + 𝑑!	
	
This	 is	 the	 length	 of	 the	 vector	 running	 from	 the	 origin	 (0,0,0,0)	 to	 m	 in	 the	 four-
dimensional	space	of	meta-complex	numbers.	
	
	
7.	homotope	zeros	
	
0 is a real number. 0𝑖 is an imaginary number. 0𝑧 is a zero-number. 0𝑖𝑧 is a meta-number. Even 
though the four zeros occupy the same posi=on in the four-dimensional space (the origin), 
they are dis=nct. I refer to them as homotopic numbers. 
	

0 ≠ 0𝑖 ≠ 0𝑧 ≠ 0𝑖𝑧	
	
	
The (real) number 0 is reached by moving along the x-axis to the origin of the coordinate 
system (both from the le_ and from the right). for meta-complex number 𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧: 
	

0 = 	 lim
,→$

𝑎	
	

0𝑖 = 	 lim
-→$

𝑏	
	



0𝑧 = 	 lim
.→$

𝑐	
	

0𝑖𝑧 = 	 lim
/→$

𝑐	
	
It also follows that $

$
 is not a real number but a zero-number. Indeed: 

 
0
0 = 0𝑧	(≠ 0	!)	

	
	
When the coefficients 𝑏, 𝑐 , and/or 𝑑	 in 𝑎 + 𝑏𝑖 + 𝑐𝑧 + 𝑑𝑖𝑧  are equal to zero, they can be 
omifed in the nota=on. So, although 0 ≠ 0𝑖 ≠ 0𝑧 ≠ 0𝑖𝑧, in most cases the meta-complex 
number 0 + 0𝑖 + 0𝑧 + 0𝑖𝑧	can be wrifen as 0 without causing confusion. 
	
	
8. Hyperc-omplex numbers in spherical coordinates 
 
The coefficients of the hyper-complex number ℎ = 𝑎 + 𝑏𝑖 + 𝑐𝑧 in spherical coordinates are 
as follows: 	

𝑎 = 𝑟. 𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜑 
𝑏 = 𝑟. 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜑 
𝑐 = 𝑟. 𝑐𝑜𝑠𝜑 

	
Here, 𝜑 is the angle between the real axis (the x-axis) and the projec=on of 𝑟 onto the complex 
plane (set ℂ), measured from the x-axis; 𝜃 is the angle between the zero axis (z-axis) and 𝑟  
measured from the z-axis (see Figure 4). 
	
We	can	write	ℎ	as:	
	

ℎ = 𝑟(𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜑 + 𝑖. 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜑 + 𝑧. 𝑐𝑜𝑠𝜑)	
	
	

	
	

Fig.	4.	hyper-complex number ℎ in spherical coordinates 
 
	



This	results	in	the	following	extension	of	Euler's	formula:		
	
	

ℎ = 𝑟(𝑒'0 . 𝑠𝑖𝑛𝜃 + 𝑧. 𝑐𝑜𝑠𝜃)	
	
proof:	
	
ℎ = 𝑟(𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜑 + 𝑖. 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜑 + 𝑧. 𝑐𝑜𝑠𝜃) = 𝑟(𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜑 + 𝑖. 𝑠𝑖𝑛𝜑) + 𝑧. 𝑐𝑜𝑠𝜃	
	
and	since:	𝑐𝑜𝑠𝜑 + 𝑖. 𝑠𝑖𝑛𝜑 = 𝑒'0	(Euler's	Formula):	
	
ℎ = 𝑟(𝑒'0 . 𝑠𝑖𝑛𝜃 + 𝑧. 𝑐𝑜𝑠𝜃)	∎	
	
	
9. Some applica0ons of hyper-complex numbers 
 
As a result of introducing zero-numbers, ra=onal expressions (a quo=ent of two polynomials) 
as well as func=ons where division by zero occurs have solu=ons for all values of ℝ. Here are 
some examples to illustrate this. 
 
𝑓(𝑥) = %

"
	 ⇒	 𝑓(0) = %

$
= 	𝑧	

	
𝑓(𝑥) = 1

"
		 ⇒	 𝑓(0) = 1

$
= 	5𝑧	

	
𝑓(𝑥) = !"2+

"*%
		 ⇒	 𝑓(1) = !2+

$
= 5𝑧	

	
𝑓(𝑥) = 1"*%

"*%
		 ⇒	 𝑓(1) = 1*%

$
= 4𝑧	

	
𝑓(𝑥) = %

3')"
		 ⇒	 𝑓(𝑘. 𝜋) = %

3')(5.7)
= 𝑧	(for	k	∈ ℤ)	

	
For	𝛼 ∈ ℝ:	tan 𝛼 = 9:;<

=>9<
		 is	undekined	in	ℝ	when	cos 𝛼 = 0.	This	 is	 the	case	when	𝛼 = 57

!
	

(for	k	∈ ℤ).	In	ℍ	however:	
	

tan
𝑘𝜋
2 = sin

𝑘𝜋
2 .

1

cos 𝑘𝜋2
= 1.

1
0 = 1. 𝑧 = 𝑧	

	
Similarly:	
	

cot 0 = 𝑧	
	

tan
3𝜋
2 = −𝑧	

	
cot 𝜋 = −𝑧	

 



 
 
 
 
10. Folding back of func0ons 
 
We already saw that for posi=ve values of 𝑥 approaching 0, 𝑓(𝑥) = %

"
  gets closer to ∞, while 

for nega=ve values of 𝑥 approaching 0, %
"
  gets closer to −∞	𝑖𝑛	ℝ. So the func=on 𝑓(𝑥) = %

"
 

has no real solu=on for 𝑥 = 0.	In ℍ however, 𝑓(0) = %
$
= 	𝑧 (see Figure 5). 

 
 

 
 

Fig. 5. 𝑓(𝑥) = #
$
  for  𝑥 approaching 0. 

 
 

We could interpret this as if the func=on  𝑓(𝑥) = %
"
 "folds back" into 𝑧 for	𝑥 = 0 (see Figure 

6). 
 

 
Fig. 6. 𝑓(𝑥) = #

$
  folds back into 𝑧 for  𝑥 = 0. 



 
Similarly, 𝑓(𝑥) = 1

"
  folds back into 5𝑧 for  𝑥 = 0 (see Figure 7). 

 
 

Fig. 7. 𝑓(𝑥) = #
$
  folds back into 𝑧 for  𝑥 = 0. 

 
Whenever a func=on results in division by zero for some value, the func=on folds back into a 
zero-number	𝑑𝑧 (where 𝑑 is a real number). 
 
 
11. Collapsing and spreading of number sets 
 
When for any hyper-complex number ℎ	 = 	𝑎	 + 	𝑏𝑖	 + 	𝑐𝑧, coefficient 𝑐 approaches zero, at 
the limit, the number becomes a complex number. 
 

lim
.→$

	𝑎	 + 	𝑏𝑖	 + 	𝑐𝑧 = 	𝑎	 + 	𝑏𝑖		
	
We	could	interpret	this	as	the	set	ℤ	of	zero-numbers	"collapsing"	and	"spreading"	into	
the	set	ℂ	of	complex	numbers	(see	Figure	8).	
 

 
Fig. 8 Set	ℤ	of	zero-numbers	"collapsing"	(blue	arrows)	and	"spreading"	(red	arrows)	into	the	set	ℂ	of	

complex	numbers.	
	



 
Similarly, the	set	ℝ	of	real	numbers	collapses	and	spreads	into	the	set	𝔸	of	imaginary-zero	
numbers,	and	the	set	of	imaginary	numbers	collapses	and	spreads	into	the	set	𝔹	of	real-
zero	numbers.	Any	set	of	numbers	may	collapse	and	spread	into	another	set	that	does	not	
include	the	original	set,	as	if	through	a	"wormhole"	to	another	dimension.	
 
 
11. Conclusion and further developments 
 
The theory developed above is far from complete. The study is merely intended to introduce 
number sets that allow for division by zero. This way, it aims to expand the possibili=es of 
arithme=c. It is my belief that the theory can be further developed. Whether hyper-complex 
and meta-complex numbers also have prac=cal applica=ons remains to be seen. In any case, 
it has the poten=al to enrich the array of mathema=cal tools. 
 
It doesn't seem impossible that the hyper-complex and meta-complex numbers could find an 
applica=on, for instance, in quantum mechanics, where the use of complex numbers is already 
a necessity. The hyper-complex and meta-complex numbers might serve as a tool for studying 
phenomena and condi=ons that approach zero or infinity (such as singulari=es, black holes, 
vacuum energy, etc.). The future (in space-=me) will tell... 
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